Product Description

Portable Hydraulic Ram / Multi-stage hydraulic cylinder
with lightweight for use in confined spaces.

1. Rated output from 10 metric tons to 100 metric tons
2. Stroke from 25mm to 68mm
3. Oil storage volume from 22CC to 225CC
4. Closed height from 45mm to 88mm
5. Baked enamel finish for increased corrosion resistance
6. Plunger wiper reduces contamination, extending cylinder life.
7. It is easy to carry, there are 2 holes on the surface of the oil vat for stability
8. Single-acting, spring return
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Model   Tonnage   Stroke   Oil
capacity
Matching
pump
Closed
height
  G. W.   Volume
  (T)   (mm)   (cc)   (mm)   (kg)   (mm)
  HHYG-10D   10   25   22   HHB-700C   48   1.4   150*65*50
  HHYG-20D   20   26   41   HHB-700C   56   2.5   165*85*60
  HHYG-30D   30   53   67   HHB-700C   62   4.1   185*100*65
  HHYG-50D   50   64   113   HHB-700C   71   6.4   210*120*750
  HHYG-100D   100   68   225   HHB-700   88   14.5   250*170*100

Type: Hydraulic Jack
Structure: Hydraulic Jack
Capacity (Load): 10~100 Ton
Power Source: Hydraulic
Max Height: 151-200mm
Certification: CE, ISO 9001:2000, ISO 9001:2008
Customization:
Available

|

hydraulic cylinder

How does a hydraulic ram manage variations in load capacity and weight?

A hydraulic ram employs various mechanisms and design features to effectively manage variations in load capacity and weight. Here’s a detailed explanation:

1. Pressure Adjustments: Hydraulic rams can manage variations in load capacity by adjusting the operating pressure. By regulating the pressure within the hydraulic system, the force output of the ram can be controlled. This allows the ram to accommodate different load capacities and weights by adjusting the pressure accordingly. Pressure can be adjusted using pressure control valves or regulators.

2. Piston and Cylinder Design: The design of the piston and cylinder in a hydraulic ram contributes to managing variations in load capacity. The piston area determines the force output of the ram, while the cylinder diameter determines the load-carrying capacity. By selecting the appropriate piston and cylinder sizes, the hydraulic ram can be tailored to handle different load capacities and weights. Larger piston and cylinder sizes are used for heavier loads, while smaller sizes are suitable for lighter loads.

3. Mechanical Advantage: Hydraulic rams can leverage mechanical advantage to manage variations in load capacity and weight. By incorporating mechanical systems such as levers, linkages, or gears, the force applied to the hydraulic ram can be multiplied. This mechanical advantage allows the ram to handle higher load capacities and weights than what the hydraulic pressure alone would be able to achieve.

4. Accumulators: Hydraulic rams can utilize accumulators to manage variations in load capacity. An accumulator is a device that stores hydraulic energy in the form of pressurized fluid. During periods of low demand, excess hydraulic energy can be stored in the accumulator. When there is a sudden increase in load capacity or weight, the stored energy can be released to supplement the hydraulic ram’s force output, ensuring smooth operation and efficient management of variations in load.

5. Control Systems: Advanced hydraulic ram systems can incorporate control systems to manage variations in load capacity and weight. These control systems can monitor the load conditions and adjust the hydraulic pressure, flow rate, or other parameters accordingly. By continuously adapting to changes in load, the hydraulic ram can optimize its performance and maintain consistent force output, regardless of variations in load capacity and weight.

6. Safety Features: Hydraulic rams may include safety features to protect against excessive loads or weight. These features can include overload protection mechanisms, such as pressure relief valves or limit switches, which prevent the hydraulic ram from operating beyond its safe load capacity. By incorporating such safety features, hydraulic rams can effectively manage variations in load while ensuring operational safety.

Through pressure adjustments, piston and cylinder design, mechanical advantage, accumulators, control systems, and safety features, hydraulic rams can efficiently manage variations in load capacity and weight. This versatility makes hydraulic rams suitable for a wide range of applications where load variations are encountered.

hydraulic cylinder

Can hydraulic rams be employed in material handling equipment for pushing or lifting?

Yes, hydraulic rams are commonly employed in material handling equipment for pushing or lifting operations. Here’s a detailed explanation:

1. Pushing Operations: Material handling equipment, such as forklifts, pallet jacks, or skid steer loaders, often require the ability to push heavy loads. Hydraulic rams are utilized in these machines to provide the necessary pushing force. The hydraulic ram is connected to the machine’s hydraulic system and applies force to a pushing mechanism, such as forks or blades, allowing the equipment to move and push materials efficiently. The force generated by the hydraulic ram enables smooth and controlled pushing operations, enhancing productivity in material handling tasks.

2. Lifting Operations: Hydraulic rams are extensively employed in material handling equipment for lifting heavy loads. Equipment such as cranes, scissor lifts, or hydraulic elevators utilize hydraulic rams as lifting mechanisms. The hydraulic ram, typically in the form of a hydraulic cylinder, is connected to the equipment’s hydraulic system and exerts force to raise or lower the load. By extending or retracting the hydraulic ram, the equipment can lift or lower materials with precision. The hydraulic system provides the necessary power and control for safe and efficient lifting operations.

3. Load Capacity and Control: Hydraulic rams are designed to handle a wide range of load capacities in material handling equipment. The size and specifications of the hydraulic ram are determined based on the required lifting or pushing force. By selecting the appropriate hydraulic ram, material handling equipment can effectively handle various loads, from light to extremely heavy. Additionally, hydraulic systems offer precise control over the movement of the hydraulic ram, allowing operators to lift or push materials with accuracy and control, minimizing the risk of damage or accidents.

4. Safety Features: Material handling equipment employing hydraulic rams often incorporate safety features to ensure safe operation. These features may include overload protection, safety valves, or locking mechanisms to prevent accidental movement or collapse of the hydraulic ram. Safety measures contribute to the safe and reliable use of hydraulic rams in material handling equipment, protecting both operators and the materials being handled.

5. Versatility and Adaptability: Hydraulic rams offer versatility and adaptability in material handling equipment. They can be integrated into various types of equipment, including mobile or stationary machines, and are suitable for different environments and industries. Hydraulic rams can be customized to meet specific requirements, such as stroke length, speed, or load capacity, ensuring optimal performance in material handling applications.

In summary, hydraulic rams are commonly employed in material handling equipment for pushing or lifting operations. They provide the necessary force, load capacity, and control to efficiently handle materials. With their safety features, versatility, and adaptability, hydraulic rams play a crucial role in enhancing productivity and safety in material handling processes.

hydraulic cylinder

How is a hydraulic ram different from other hydraulic devices?

A hydraulic ram differs from other hydraulic devices in several key aspects. Here’s a detailed explanation:

1. Working Principle: The hydraulic ram operates based on the principle of water hammer effect and utilizes the kinetic energy of flowing water to pump a portion of that water to a higher elevation. In contrast, other hydraulic devices, such as hydraulic cylinders or hydraulic motors, typically rely on pressurized fluid, usually oil or hydraulic fluid, to generate mechanical force or rotational motion.

2. Energy Source: The hydraulic ram harnesses the energy of flowing water, which is often a renewable and readily available energy source. It does not require external power sources, such as electricity or fossil fuels, to operate. On the other hand, other hydraulic devices typically rely on external power, such as electric motors or engines, to drive the hydraulic fluid and generate hydraulic force or motion.

3. Application: The primary application of a hydraulic ram is to pump water from a lower elevation to a higher elevation, typically for irrigation, water supply, or other similar purposes. It is commonly used in areas with a natural flow of water. In contrast, other hydraulic devices have a wide range of applications across various industries, including construction, manufacturing, automotive, and aerospace. Hydraulic cylinders are commonly used for linear actuation and force generation, while hydraulic motors are used for rotating machinery and motion control.

4. Control and Adjustability: Hydraulic rams have limited control and adjustability compared to other hydraulic devices. The operation of a hydraulic ram is primarily dependent on the water flow and pressure fluctuations. While adjustments can be made to the valve opening or air vessel size, the control over the hydraulic ram’s performance is relatively limited. In contrast, other hydraulic devices offer greater control and adjustability through the use of control valves, flow regulators, pressure sensors, and other components. This allows for precise control of force, speed, and direction in hydraulic systems.

5. Complexity and Components: Hydraulic rams are relatively simple in design and have fewer components compared to other hydraulic devices. They typically consist of a drive pipe, delivery pipe, valve, and air vessel. Other hydraulic devices, such as hydraulic cylinders or hydraulic motors, often have more complex designs with additional components, such as pistons, seals, control valves, and hydraulic lines. The complexity of these devices allows for a wider range of functionalities and precise control but also requires more intricate maintenance and system design.

6. Efficiency: Hydraulic rams are known for their efficiency in converting the energy of flowing water into mechanical work. They can achieve high efficiency levels, especially when properly designed and installed. Other hydraulic devices can also be highly efficient, but their efficiency can be influenced by factors such as fluid leaks, friction losses, and mechanical inefficiencies in the system.

Overall, the hydraulic ram stands out as a specialized hydraulic device that utilizes the energy of flowing water for pumping applications. While it may have limitations in terms of control and adjustability compared to other hydraulic devices, its unique working principle and reliance on renewable energy make it a suitable choice in specific situations where a natural water source is available.

China best Portable Hydraulic RAM   vacuum pump oil near me		China best Portable Hydraulic RAM   vacuum pump oil near me
editor by CX 2024-01-07