Product Description

Products Description  

Product Name SYG Series Multi-Stage Hydraulic Cylinder
Pressure 7/14/16/21/31.5MPa  
Material Aluminum, Cast Iron,45mnb Steel, Stainless Steel
Stage Up to 5 stage
Bore Size 40mm–320mm, Customizable
Shaft Diameter 20mm–220mm, Customizable
Stroke Length 30mm–14100mm, Customizable
Rod Surface Hardness HRC48-54
Paint Color Black, Yellow, Blue, Brown, Customizable
Mounting Earring, Flange, Clevis.Foot, Trunnion, Customizable
Warranty 1 Year
Delivery Time 7-15 Days, Also depending on specific demands

Company Profile                                                                                                          
QiangLin is a professional hydraulic equipment manufacturer, mainly engaged in hydraulic system design, manufacture, installation, transformation, sales, and technical services. Our manufacturing facilities are certified to the ISO 9001 standard. We are an approved supplier to many equipment manufacturers in China. We are also partners with many customers from America, Canada, Australia, Germany, England, and other European Countries. Product quality, shorter delivery time, and customer satisfaction are our long-term commitments to our CHINAMFG customers. Hope to be your partner.

Q1: Are you a trading company or a manufacturer?
A: We have our own factory.
Q2: Are you able to make Non-standard or customized products?
A: Yes, we can.
Q3: How long is your delivery time?
A: Normally, the delivery time is 7 days if we have stock, and 15-30 working days if we don’t. but it
also depends on the product
requirements and quantity.
Q4: Do you provide samples? are the samples free or not?
A: Yes, we can provide samples, but they are not free of charge.
Q5: What are your payment terms?
A: 30% deposit T/T or Irrevocable L/C at sight, If you have any questions, please feel free to
contact us.
Q6: What are your After-sales services?
A: Before shipment, Each individual product will be strictly inspected on our factory QC Process
System. In addition, We have a
Customer Service team to respond to customers’ questions within 12 hours. Being helpful in
solving customers’ problems is always our goal.

Certification: CE, ISO9001
Pressure: High Pressure
Work Temperature: Normal Temperature


.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.

about shipping cost and estimated delivery time.
Payment Method:


Initial Payment

Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

hydraulic cylinder

How does a hydraulic ram contribute to efficient and powerful force generation?

A hydraulic ram utilizes specific design principles and mechanisms to generate efficient and powerful forces. Here’s a detailed explanation:

1. Water Hammer Effect: The hydraulic ram harnesses the water hammer effect to generate powerful forces. When water flows into the ram during the drive phase, it gains velocity and momentum. As the water reaches a certain pressure threshold, the valve mechanism rapidly closes, creating a water hammer effect. This sudden closure of the valve generates a high-pressure pulse that propels a portion of the water to a higher elevation, producing a powerful force.

2. Momentum Transfer: The hydraulic ram efficiently transfers the momentum of flowing water to generate force. The momentum of the moving water is converted into mechanical work as the water hammer effect occurs. By utilizing the kinetic energy of the water, the hydraulic ram maximizes the efficiency of force generation.

3. Energy Recovery: One of the key features of a hydraulic ram is its ability to recover and reuse energy. As the water hammer effect occurs and the high-pressure pulse lifts a portion of the water, the remaining water in the ram’s drive pipe decelerates. This deceleration allows the kinetic energy of the water to be converted back into potential energy, which can be used to pump a new cycle of water. This energy recovery mechanism enhances the overall efficiency of the hydraulic ram.

4. Mechanical Advantage: A hydraulic ram incorporates mechanical advantage through its design. The valve mechanism and other components are optimized to multiply the force generated by the water hammer effect. By leveraging mechanical advantage, the hydraulic ram can produce a more powerful force output compared to the input force from the flowing water.

5. Self-Sustaining Operation: A hydraulic ram operates in a self-sustaining manner, requiring minimal external power sources. Once the ram is set up and primed with water, it can continue to operate using the energy of flowing water. This self-sustainability contributes to the efficiency of force generation, as it eliminates the need for continuous external energy input.

6. Simple and Robust Design: The design of a hydraulic ram is relatively simple and robust, enabling efficient force generation. The absence of complex components reduces friction and energy losses. Additionally, the robust design ensures durability and long-term reliability, making hydraulic rams suitable for various applications.

Through the water hammer effect, momentum transfer, energy recovery, mechanical advantage, self-sustaining operation, and a simple yet robust design, a hydraulic ram maximizes the efficiency and power of force generation. These features make hydraulic rams an effective and reliable choice for pumping water and harnessing hydraulic power.

hydraulic cylinder

Can hydraulic rams be used in construction equipment like bulldozers?

Yes, hydraulic rams are commonly used in construction equipment like bulldozers. Here’s a detailed explanation:

1. Blade Control: Bulldozers are equipped with large blades mounted at the front, which are used for various tasks such as pushing and leveling soil, debris, or other materials. Hydraulic rams play a crucial role in controlling the movement of these blades. The hydraulic rams are connected to the bulldozer’s hydraulic system and enable the operator to adjust the angle, height, and tilt of the blade. By utilizing hydraulic rams, bulldozer operators can precisely control the blade’s position and apply the necessary force for efficient earthmoving and grading operations.

2. Ripper Attachment: Bulldozers often have ripper attachments at the rear of the machine. The ripper is used to break up hard or compacted soil, rocks, or pavement surfaces. Hydraulic rams are utilized to control the movement of the ripper attachment. The rams enable the operator to raise, lower, and angle the ripper, allowing for effective penetration and loosening of the ground. Hydraulic rams provide the necessary force and control to handle tough materials and enhance the bulldozer’s versatility in various construction applications.

3. Track System: Bulldozers feature a track system for mobility and traction on rough terrain. Hydraulic rams are integral components of the bulldozer’s track system, responsible for controlling the movement and tension of the tracks. The rams allow for adjustments in track tension to optimize the grip and stability of the bulldozer when operating on different ground conditions. By utilizing hydraulic rams in the track system, bulldozers can maneuver efficiently and maintain traction even in challenging construction environments.

4. Hydraulic Power: Hydraulic rams in bulldozers are powered by a hydraulic system that consists of a hydraulic pump, valves, and actuators. The hydraulic system provides the necessary power and control to operate the hydraulic rams effectively. Bulldozers typically have robust hydraulic systems capable of generating high forces, allowing the rams to exert significant pushing or lifting capabilities. The hydraulic power provided by the system enables bulldozers to perform heavy-duty construction tasks with precision and efficiency.

5. Operator Control: Bulldozer operators have control over the hydraulic rams through hydraulic control levers or joysticks in the operator cabin. These controls allow operators to manipulate the position, speed, and force of the hydraulic rams, providing precise control over the blade and ripper attachments. The intuitive and responsive nature of hydraulic controls enhances the operator’s ability to perform tasks accurately and efficiently.

In summary, hydraulic rams are extensively used in construction equipment like bulldozers to control the blade and ripper attachments, manage the track system, provide hydraulic power, and offer operator control. The integration of hydraulic rams enhances the performance, versatility, and productivity of bulldozers in various construction and earthmoving applications.

hydraulic cylinder

What is a hydraulic ram and how does it work?

A hydraulic ram is a type of water pump that utilizes the energy of flowing water to lift a portion of that water to a higher elevation. Here’s a detailed explanation of its working principle:

A hydraulic ram consists of several key components:

  • Drive Pipe: The drive pipe is connected to a water source, such as a stream or a river. It carries the flowing water that provides the energy for the hydraulic ram.
  • Delivery Pipe: The delivery pipe carries the water from the hydraulic ram to the desired destination at a higher elevation.
  • Valve: The valve controls the flow of water within the hydraulic ram.
  • Air Vessel: The air vessel acts as an accumulator and helps maintain a constant flow of water.

The working principle of a hydraulic ram can be summarized in the following steps:

1. Water Flow: The hydraulic ram is installed in a location where there is a natural flow of water. As water flows through the drive pipe, it enters the hydraulic ram.

2. Water Hammer Effect: The flowing water gains momentum and velocity as it enters the hydraulic ram. When the water flow is abruptly stopped by the valve, the kinetic energy of the moving water is converted into pressure energy, creating a water hammer effect.

3. Valve Operation: The sudden increase in pressure due to the water hammer effect forces the valve to close, preventing the backward flow of water. This closure allows the pressure to build up in the hydraulic ram.

4. Air Vessel Operation: As the pressure builds up, it compresses the air in the air vessel. The compressed air acts as a cushion, absorbing the pressure fluctuations and maintaining a constant flow of water.

5. Delivery Phase: Once the pressure reaches a certain threshold and the valve closes, the compressed air in the air vessel pushes the water through the delivery pipe, lifting a portion of the water to a higher elevation.

6. Valve Reopening: As the water is pushed out through the delivery pipe, the pressure in the hydraulic ram decreases. This causes the valve to reopen, allowing the cycle to repeat.

7. Continuous Operation: The hydraulic ram operates continuously as long as there is a steady flow of water in the drive pipe. It uses the energy of the flowing water to lift a smaller portion of that water to a higher elevation, without the need for external power sources.

Hydraulic rams are commonly used in areas with a reliable water source and a need for pumping water to a higher elevation. They are particularly useful in remote locations or off-grid settings, where conventional power sources may not be readily available.

China factory Two Stage Multi Stage Hydraulic RAM   with Best Sales China factory Two Stage Multi Stage Hydraulic RAM   with Best Sales
editor by CX 2023-11-22