Product Description

 

Hydraulic cylinder for Australia market 
 

Double-acting applications;

Standard color: Black;

Steel piston & 5 piece seal;

Ports: SAE(NPTF port or other can be available);

100% hydro-pressure test;

Rod surface treatment:

Superior quality chrome plated;

Apply LOCTITE to rod end thread.
 

Please visit our website to select standard cylinders, we will offer best

price.  For custom-made cylinders, please feel free to send us drawings for pricing.  

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Steel
Usage: Automation and Control
Structure: Piston Cylinder
Power: Hydraulic
Standard: Standard, Nonstandard
Pressure Direction: Double-acting Cylinder

hydraulic cylinder

How does a hydraulic ram contribute to controlled and precise movement?

A hydraulic ram plays a crucial role in enabling controlled and precise movement. Here’s a detailed explanation:

1. Hydraulic Fluid: Hydraulic rams operate by utilizing hydraulic fluid, which acts as a medium for transmitting force. The fluid is incompressible, allowing force to be evenly distributed throughout the system. This property ensures that the movement of the ram is smooth and consistent, contributing to controlled and precise motion.

2. Flow Control: Hydraulic rams incorporate flow control mechanisms to regulate the rate of fluid flow. Flow control valves, such as throttle valves or flow restrictors, can be used to adjust the speed at which the fluid enters or exits the ram. By controlling the flow rate, the speed of the ram’s movement can be precisely managed, enabling controlled and precise motion.

3. Pressure Regulation: The hydraulic pressure within the system directly influences the force output and speed of the hydraulic ram. By controlling the pressure using pressure control valves or regulators, the movement of the ram can be finely tuned. Adjusting the pressure allows for precise control over the force applied by the ram, resulting in controlled and precise movement.

4. Piston and Cylinder Design: The design of the piston and cylinder in a hydraulic ram contributes to controlled and precise movement. The fit between the piston and cylinder is designed to minimize leakage and ensure smooth operation. This tight clearance helps maintain accurate positioning and prevents unwanted movement or drift, allowing for precise control over the ram’s motion.

5. Proportional Control Systems: Advanced hydraulic ram systems can incorporate proportional control systems that enable precise movement control. These control systems use sensors and feedback mechanisms to monitor and adjust the position, speed, and force of the ram in real-time. By continuously adapting to changing conditions, the control system ensures precise and accurate movement, even in complex applications.

6. Position Sensing: Hydraulic rams can be equipped with position sensing devices, such as linear transducers or encoders, to provide feedback on the ram’s position. This feedback allows for precise positioning of the ram and ensures accurate movement control. The position sensing information can be used in conjunction with control systems to achieve the desired level of precision in the ram’s motion.

Through the use of hydraulic fluid, flow control mechanisms, pressure regulation, piston and cylinder design, proportional control systems, and position sensing devices, hydraulic rams contribute to controlled and precise movement. These features make hydraulic rams well-suited for applications that require accurate positioning, gradual motion, or precise force application.

Can hydraulic rams be applied in both mobile and stationary machinery?

Yes, hydraulic rams can be applied in both mobile and stationary machinery. Here’s a detailed explanation:

Hydraulic rams are versatile components that find applications in various industries and machinery types. Their ability to generate and transmit high forces makes them suitable for a wide range of mobile and stationary applications.

1. Mobile Machinery: Hydraulic rams are commonly used in mobile machinery, such as construction equipment, agricultural machinery, material handling vehicles, and transportation vehicles. In these applications, hydraulic rams are utilized for tasks such as lifting, pushing, pulling, tilting, and steering. Mobile machinery often requires compact and efficient power systems, and hydraulic rams provide the necessary force multiplication capabilities while being adaptable to different operational conditions.

2. Stationary Machinery: Hydraulic rams are also extensively employed in stationary machinery across various industries. Examples include hydraulic presses, industrial robots, machine tools, hydraulic lifts, and heavy-duty equipment. In stationary machinery, hydraulic rams are utilized for precision positioning, applying controlled force, clamping, bending, or pressing operations. The ability to control and adjust the force, speed, and position of hydraulic rams makes them ideal for applications that require accurate and repeatable motion.

3. Common Applications: Hydraulic rams can be found in a wide range of specific applications. For mobile machinery, this may include the hydraulic cylinders used in excavators to control the boom, arm, and bucket movements. In stationary machinery, hydraulic rams are often employed in hydraulic presses for metal forming, hydraulic clamps for workholding, or hydraulic actuators for precise motion control. The flexibility of hydraulic rams allows for customization to suit specific requirements in diverse industries.

4. Advantages in Both Mobile and Stationary Machinery: The use of hydraulic rams provides several advantages in both mobile and stationary machinery. These include high force output, adjustable force and speed, smooth operation, compact design, reliability, and durability. Hydraulic systems offer efficient power transmission and can be easily integrated into different machinery designs, making them a popular choice in a wide range of applications.

Overall, hydraulic rams can be effectively applied in both mobile and stationary machinery, offering the benefits of force multiplication, precise control, and adaptability to diverse operational requirements.

hydraulic cylinder

Can hydraulic rams be employed in material handling equipment for pushing or lifting?

Yes, hydraulic rams are commonly employed in material handling equipment for pushing or lifting operations. Here’s a detailed explanation:

1. Pushing Operations: Material handling equipment, such as forklifts, pallet jacks, or skid steer loaders, often require the ability to push heavy loads. Hydraulic rams are utilized in these machines to provide the necessary pushing force. The hydraulic ram is connected to the machine’s hydraulic system and applies force to a pushing mechanism, such as forks or blades, allowing the equipment to move and push materials efficiently. The force generated by the hydraulic ram enables smooth and controlled pushing operations, enhancing productivity in material handling tasks.

2. Lifting Operations: Hydraulic rams are extensively employed in material handling equipment for lifting heavy loads. Equipment such as cranes, scissor lifts, or hydraulic elevators utilize hydraulic rams as lifting mechanisms. The hydraulic ram, typically in the form of a hydraulic cylinder, is connected to the equipment’s hydraulic system and exerts force to raise or lower the load. By extending or retracting the hydraulic ram, the equipment can lift or lower materials with precision. The hydraulic system provides the necessary power and control for safe and efficient lifting operations.

3. Load Capacity and Control: Hydraulic rams are designed to handle a wide range of load capacities in material handling equipment. The size and specifications of the hydraulic ram are determined based on the required lifting or pushing force. By selecting the appropriate hydraulic ram, material handling equipment can effectively handle various loads, from light to extremely heavy. Additionally, hydraulic systems offer precise control over the movement of the hydraulic ram, allowing operators to lift or push materials with accuracy and control, minimizing the risk of damage or accidents.

4. Safety Features: Material handling equipment employing hydraulic rams often incorporate safety features to ensure safe operation. These features may include overload protection, safety valves, or locking mechanisms to prevent accidental movement or collapse of the hydraulic ram. Safety measures contribute to the safe and reliable use of hydraulic rams in material handling equipment, protecting both operators and the materials being handled.

5. Versatility and Adaptability: Hydraulic rams offer versatility and adaptability in material handling equipment. They can be integrated into various types of equipment, including mobile or stationary machines, and are suitable for different environments and industries. Hydraulic rams can be customized to meet specific requirements, such as stroke length, speed, or load capacity, ensuring optimal performance in material handling applications.

In summary, hydraulic rams are commonly employed in material handling equipment for pushing or lifting operations. They provide the necessary force, load capacity, and control to efficiently handle materials. With their safety features, versatility, and adaptability, hydraulic rams play a crucial role in enhancing productivity and safety in material handling processes.

hydraulic cylinder

What are the components and parts of a hydraulic ram?

A hydraulic ram consists of several key components and parts. Here’s a detailed explanation:

1. Drive Pipe: The drive pipe is the inlet pipe through which the flowing water enters the hydraulic ram. It is connected to a water source, such as a stream or a river, and carries the water that provides the energy for the hydraulic ram.

2. Delivery Pipe: The delivery pipe is the outlet pipe through which the water is pumped to the desired destination at a higher elevation. It carries the lifted water away from the hydraulic ram.

3. Valve: The valve controls the flow of water within the hydraulic ram. It is responsible for allowing the water to enter the ram during the drive phase and closing to create the water hammer effect during the delivery phase. The valve’s opening and closing are crucial for the hydraulic ram’s operation.

4. Air Vessel: The air vessel, also known as the air chamber or air dome, is a chamber that contains compressed air. It acts as an accumulator and helps maintain a constant flow of water by absorbing pressure fluctuations during the operation of the hydraulic ram. The compressed air in the air vessel provides a cushioning effect and contributes to the overall efficiency of the ram.

5. Waste Valve: Some hydraulic ram designs include a waste valve. The waste valve is an optional component that allows excess water or air to escape from the hydraulic ram if the pressure becomes too high. It helps protect the ram from damage caused by excessive pressure build-up.

6. Seals and Gaskets: Seals and gaskets are essential components that prevent leakage of water or air from the hydraulic ram. They ensure the proper functioning and efficiency of the ram by maintaining the necessary pressure differentials and preventing loss of energy.

7. Frame and Mounting: The hydraulic ram is typically housed within a sturdy frame or housing that provides support and protection for the components. The frame also serves as a mounting point for installation, securing the ram in the desired location.

8. Control Mechanism (Optional): Some hydraulic ram systems may incorporate a control mechanism, such as a lever or float, to regulate the operation of the ram. This mechanism allows manual or automatic control over the valve opening and closing, providing additional flexibility and adjustability.

These components work together to enable the hydraulic ram to harness the energy of flowing water and pump a portion of that water to a higher elevation without the need for external power sources.

China high quality 3000psi Double Acting Hydraulic Cylinder Hydraulic RAM for Australia   manufacturer China high quality 3000psi Double Acting Hydraulic Cylinder Hydraulic RAM for Australia   manufacturer
editor by CX 2024-01-16